Studies of Dopamine Oxidation Process by Atmospheric Pressure Glow Discharge Mass Spectrometry

Author:

Dai Dongli123,Zhu Yueqin13,Zhu Zhenli4,Qian Rong13ORCID,Zhuo Shangjun13,Liu Anqi13,Li Xian13,Li Wei2,Chen Qiao5

Affiliation:

1. National Center for Inorganic Mass Spectrometry in Shanghai, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

2. School of Material and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China

3. Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

4. State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China

5. Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, UK

Abstract

An atmospheric pressure glow discharge ionisation source was constructed and utilized to study the dopamine (DA) oxidation process coupling with mass spectrometry. During the DA oxidation process catalysed by polyphenol oxidase (PPO), six cationic intermediates were directly detected by the atmospheric pressure glow discharge mass spectrometry (APGD-MS). Combined with tandem mass spectrometry, the structures of the dopamine o-semiquinone radical (DASQ) and leukodopaminochrome radical (LDAC●) intermediates and structures of the isomers of dopaminochrome (DAC) and 5,6-dihydroxyindole (DHI) were further characterised with the introduction of 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) and deuterium oxide (D2O) to APGD-MS. Meanwhile, UV–Vis studies confirmed the important role of PPO in catalyzing the DA oxidation reaction. Based on APGD-MS studies, a possible mechanism could be proposed for DA oxidation catalysed by PPO. Furthermore, APGD-MS could provide possibilities for the effective detection and characterisation of short-lived intermediates, even in complicated systems.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

Shanghai Technical Platform of Testing on Inorganic Materials

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3