Carbon Consumption Patterns of Microbial Communities Associated with Peltigera Lichens from a Chilean Temperate Forest

Author:

Almendras Katerin,Leiva Diego,Carú Margarita,Orlando JulietaORCID

Abstract

Lichens are a symbiotic association between a fungus and a green alga or a cyanobacterium, or both. They can grow in practically any terrestrial environment and play crucial roles in ecosystems, such as assisting in soil formation and degrading soil organic matter. In their thalli, they can host a wide diversity of non-photoautotrophic microorganisms, including bacteria, which play important functions and are considered key components of the lichens. In this work, using the BioLog® EcoPlate system, we studied the consumption kinetics of different carbon-sources by microbial communities associated with the thallus and the substrate of Peltigera lichens growing in a Chilean temperate rain forest dominated by Nothofagus pumilio. Based on the similarity of the consumption of 31 carbon-sources, three groups were formed. Among them, one group clustered the microbial metabolic profiles of almost all the substrates from one of the sampling sites, which exhibited the highest levels of consumption of the carbon-sources, and another group gathered the microbial metabolic profiles from the lichen thalli with the most abundant mycobiont haplotypes. These results suggest that the lichen thallus has a higher impact on the metabolism of its microbiome than on the microbial community of its substrate, with the latter being more diverse in terms of the metabolized sources and whose activity level is probably related to the availability of soil nutrients. However, although significant differences were detected in the microbial consumption of several carbon-sources when comparing the lichen thallus and the underlying substrate, d-mannitol, l-asparagine, and l-serine were intensively metabolized by both communities, suggesting that they share some microbial groups. Likewise, some communities showed high consumption of 2-hydroxybenzoic acid, d-galacturonic acid, and itaconic acid; these could serve as suitable sources of microorganisms as bioresources of novel bioactive compounds with biotechnological applications.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference87 articles.

1. Lichen Biology;Nash,2008

2. Dictionary of the Fungi;Ainsworth,2008

3. Lichens are more important than you think

4. Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass?

5. Lichen biogeography;Galloway,2008

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3