Phytofabrication of Selenium Nanoparticles with Moringa oleifera (MO-SeNPs) and Exploring Its Antioxidant and Antidiabetic Potential

Author:

Ahamad Tarmizi Anas Ahzaruddin1ORCID,Nik Ramli Nik Nasihah1,Adam Siti Hajar2,Abdul Mutalib Maisarah1ORCID,Mokhtar Mohd Helmy3ORCID,Tang Shirley Gee Hoon4ORCID

Affiliation:

1. School of Graduate Studies (SGS), Management and Science University, Shah Alam 40100, Malaysia

2. Pre-Clinical Department, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur 57000, Malaysia

3. Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia

4. Center for Toxicology and Health Risk Studies (CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia

Abstract

The advancement in nanotechnology is the trigger for exploring the synthesis of selenium nanoparticles and their use in biomedicine. Therefore, this study aims to synthesize selenium nanoparticles using M. oleifera as a reducing agent and evaluate their antioxidant and antidiabetic potential. Our result demonstrated a change in the color of the mixture from yellow to red, and UV-Vis spectrometry of the suspension solution confirmed the formation of MO-SeNPs with a single absorbance peak in the range of 240–560 nm wavelength. FTIR analysis revealed several bioactive compounds, such as phenols and amines, that could possibly be responsible for the reduction and stabilization of the MO-SeNPs. FESEM + EDX analysis revealed that the amorphous MO-SeNPs are of high purity, have a spherical shape, and have a size of 20–250 nm in diameter, as determined by HRTEM. MO-SeNPs also exhibit the highest DPPH scavenging activity of 84% at 1000 μg/mL with an IC50 of 454.1 μg/mL and noteworthy reducing ability by reducing power assay. Furthermore, MO-SeNPs showed promising antidiabetic properties with dose-dependent inhibition of α-amylase (26.7% to 44.53%) and α-glucosidase enzyme (4.73% to 19.26%). Hence, these results demonstrated that M. oleifera plant extract possesses the potential to reduce selenium ions to SeNPs under optimized conditions with notable antioxidant and antidiabetic activities.

Funder

Ministry of Higher Education (MOHE) Malaysia under the Fundamental Research Grant Scheme

Management and Science University Publication and Conference

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3