Abstract
Sarcopenia is a clinical problem associated with several pathological and non-pathological conditions. The aim of the present research is the evaluation of the pharmacological profile of the leucine metabolite β-hydroxy-β-methyl butyrate (HMB) associated with the natural R(+) stereoisomer of lipoic acid (R(+)LA) in a cellular model of muscle wasting. The C2C12 cell line is used as myoblasts or is differentiated in myotubes, sarcopenia is induced by dexamethasone (DEX). A Bonferroni significant difference procedure is used for a post hoc comparison. DEX toxicity (0.01–300 µM concentration range) is evaluated in myoblasts to measure cell viability and caspase 3 activation after 24 h and 48 h; cell incubation with 1 µM DEX for 48 h is chosen as optimal treatment for decreasing cell viability and increasing caspase 3 activity. R(+)LA or HMB significantly prevents DEX-induced cell mortality; the efficacy is improved when 100 µM R(+)LA is combined with 1 mM HMB. Regarding myoblasts, this combination significantly reduces DEX-evoked O2− production and protein oxidative damage. During the early phase of myotube formation, the mixture preserves the number of myogenin-positive cells, whereas it completely prevents the DEX-dependent damage in a later phase of myotube differentiation (7 days), as evaluated by cell diameter and percentage of multinucleated cells. R(+)LA in association with HMB is suggested for sarcopenia therapy.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献