Evaluation of Inhibitory Effect and Mechanism of Euphorbia Factor L3 against Phytophthora capsici

Author:

Wang Bi1,Zhang Guodong1,Yang Jingjing1,Li Linwei1,Li Pirui1,Xu Shu1,Feng Xu1,Chen Yu1

Affiliation:

1. Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-Cultivation and High-Value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China

Abstract

Phytophthora capsici is a highly destructive phytopathogenic oomycete with a broad host range and is responsible for tremendous losses. Euphorbia factor L3 (EFL3) is a natural plant-derived compound that has been widely studied in medicine and cosmetic applications. In this study, the sensitivity of 105 P. capsici isolates to EFL3 was determined, and the biological activity and physiological effects of EFL3 against P. capsici were investigated. The median effective concentration (EC50) values for EFL3 inhibition mycelial growth and spore germination ranged from 0.66 to 8.94 μg/mL (mean, 2.96 ± 0.91 μg/mL) and 1.63 to 13.16 μg/mL (mean, 5.30 ± 1.64 μg/mL), respectively. EFL3 treatment resulted in cell wall and cell membrane damage of P. capsici, which was revealed by morphological and ultrastructural observations, propidium iodide (PI) and calcofluor white (CFW) staining, and measurements of relative conductivity as well as malondialdehyde (MDA) and glycerol contents. In addition, the contents of phospholipid and cellulose, which are the major components of cell membrane and cell wall, were significantly reduced following EFL3 treatment. Furthermore, EFL3 provided protective as well as curative efficacies against P. capsici on detached tomato leaves and pepper seedlings in vivo. These data show that EFL3 exhibits strong inhibitory activity against P. capsici, thereby suggesting that it could be an effective alternative for controlling P. capsici-induced diseases.

Funder

National Natural Science Foundation of China

Innovation and Promotion Project for Forestry Science and Technology of Jiangsu Province

Key R&D Program of Jiangsu Province

Open Fund of Jiangsu Key Laboratory for the Research and Utilization of Plant Resources

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3