Synthesis and Characterization of a Multi-Walled Carbon Nanotube–Ionic Liquid/Polyaniline Adsorbent for a Solvent-Free In-Needle Microextraction Method

Author:

Ahn Soyoung1,Bae Sunyoung1ORCID

Affiliation:

1. Department of Chemistry, Seoul Women’s University, 621 Hwarang-ro, Nowon-gu, Seoul 01797, Republic of Korea

Abstract

Sample preparation is an essential process when handling complex matrices. Extraction without using a solvent requires the direct transfer of analytes from the sample to the adsorbent either in the gas or liquid phase. In this study, a wire coated with a new adsorbent was fabricated for in-needle microextraction (INME) as a solvent-free sample extraction method. The wire inserted into the needle was placed in the headspace (HS), which was saturated with volatile organic compounds from the sample in a vial. A new adsorbent was synthesized via electrochemical polymerization by mixing aniline with multi-walled carbon nanotubes (MWCNTs) in the presence of an ionic liquid (IL). The newly synthesized adsorbent using IL is expected to achieve high thermal stability, good solvation properties, and high extraction efficiency. The characteristics of the electrochemically synthesized surfaces coated with MWCNT–IL/polyaniline (PANI) adsorbents were characterized using Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and atomic force microscopy (AFM). Then, the proposed HS–INME–MWCNT–IL/PANI method was optimized and validated. Accuracy and precision were evaluated by analyzing replicates of a real sample containing phthalates, showing spike recovery between 61.13% and 108.21% and relative standard deviations lower than 15%. The limit of detection and limit of quantification of the proposed method were computed using the IUPAC definition as 15.84~50.56 μg and 52.79~168.5 μg, respectively. We concluded that HS–INME using a wire coated with the MWCNT–IL/PANI adsorbent could be repeatedly used up to 150 times without degrading its extraction performance in an aqueous solution; it constitutes an eco-friendly and cost-effective extraction method.

Funder

Seoul Women’s University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Highpoints of carbon nanotube nanocomposite sensors—A review;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3