Supercapacitor Performance of Magnetite Nanoparticles Enhanced by a Catecholate Dispersant: Experiment and Theory

Author:

Boucher Coulton1,Rubel Oleg1ORCID,Zhitomirsky Igor1ORCID

Affiliation:

1. Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S4L7, Canada

Abstract

The full potential of Fe3O4 for supercapacitor applications can be achieved by addressing challenges in colloidal fabrication of high active mass electrodes. Exceptional adsorption properties of catecholate-type 3,4-dihydroxybenzoic acid (DHBA) molecules are explored for surface modification of Fe3O4 nanoparticles to enhance their colloidal dispersion as verified by sedimentation test results and Fourier-transform infrared spectroscopy measurements. Electrodes prepared in the presence of DHBA show nearly double capacitance at slow charging rates as compared to the control samples without the dispersant or with benzoic acid as a non-catecholate dispersant. Such electrodes with active mass of 40 mg cm−2 show a capacitance of 4.59 F cm−2 from cyclic voltammetry data at a scan rate of 2 mV s−1 and 4.72 F cm−2 from galvanostatic charge–discharge data at a current density of 3 mA cm−2. Experimental results are corroborated by density functional theory (DFT) analysis of adsorption behaviour of DHBA and benzoic acid at the (001) surface of Fe3O4. The strongest adsorption energy (ca. −1.8 eV per molecule) is due to the catechol group of DHBA. DFT analysis provides understanding of the basic mechanism of DHBA adsorption on the surface of nanoparticles and opens the way for fabrication of electrodes with high capacitance.

Funder

Natural Sciences and Engineering Research Council

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference94 articles.

1. Density functional theory and experimental studies of caffeic acid adsorption on zinc oxide and titanium dioxide nanoparticles;Zhang;R. Soc. Chem. Adv.,2015

2. Melrose, J. (2022). High Performance Marine and Terrestrial Bioadhesives and the Biomedical Applications They Have Inspired. Molecules, 27.

3. Forouzandeh, P., Kumaravel, V., and Pillai, S.C. (2020). Electrode Materials for Supercapacitors: A Review of Recent Advances. Catalysts, 10.

4. Hennig, K., and Meyer, W. (2022). Synthesis and Characterization of Catechol-Containing Polyacrylamides with Adhesive Properties. Molecules, 27.

5. A review of new methods of surface chemical modification, dispersion and electrophoretic deposition of metal oxide particles;Ata;R. Soc. Chem. Adv.,2014

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3