Rational Design of a Low-Data Regime of Pyrrole Antioxidants for Radical Scavenging Activities Using Quantum Chemical Descriptors and QSAR with the GA-MLR and ANN Concepts

Author:

Xie Wanting1ORCID,Wiriyarattanakul Sopon2ORCID,Rungrotmongkol Thanyada34,Shi Liyi15,Wiriyarattanakul Amphawan6ORCID,Maitarad Phornphimon1ORCID

Affiliation:

1. Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China

2. Program in Computer Science, Faculty of Science and Technology, Uttaradit Rajabhat University, Uttaradit 53000, Thailand

3. Center of Excellence in Structural and Computational Biology, Department of Biochemistry, Chulalongkorn University, Bangkok 10330, Thailand

4. Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand

5. Emerging Industries Institute, Shanghai University, Jiaxing 314006, China

6. Program in Chemistry, Faculty of Science and Technology, Uttaradit Rajabhat University, Uttaradit 53000, Thailand

Abstract

A series of pyrrole derivatives and their antioxidant scavenging activities toward the superoxide anion (O2•−), hydroxyl radical (•OH), and 1,1-diphenyl-2-picryl-hydrazyl (DPPH•) served as the training data sets of a quantitative structure–activity relationship (QSAR) study. The steric and electronic descriptors obtained from quantum chemical calculations were related to the three O2•−, •OH, and DPPH• scavenging activities using the genetic algorithm combined with multiple linear regression (GA-MLR) and artificial neural networks (ANNs). The GA-MLR models resulted in good statistical values; the coefficient of determination (R2) of the training set was greater than 0.8, and the root mean square error (RMSE) of the test set was in the range of 0.3 to 0.6. The main molecular descriptors that play an important role in the three types of antioxidant activities are the bond length, HOMO energy, polarizability, and AlogP. In the QSAR-ANN models, a good R2 value above 0.9 was obtained, and the RMSE of the test set falls in a similar range to that of the GA-MLR models. Therefore, both the QSAR GA-MLR and QSAR-ANN models were used to predict the newly designed pyrrole derivatives, which were developed based on their starting reagents in the synthetic process.

Funder

Shanghai Municipal Science and Technology Commission of Professional and Technical Service Platform for Designing and Manufacturing of Advanced Composite Materials

Emerging Industries Research Institute, Shanghai University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3