Few Layer Ti3C2 MXene-Based Label-Free Aptasensor for Ultrasensitive Determination of Chloramphenicol in Milk

Author:

Li Fang1ORCID,Xiong Shuyue1,Zhao Pei1,Dong Panpan1,Wu Zijian1ORCID

Affiliation:

1. Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, China

Abstract

Quantitative detection of veterinary drug residues in animal-derived food is of great significance. In this work, a simple and label-free electrochemical aptasensor for the highly sensitive detection of chloramphenicol (CAP) in milk was successfully developed based on a new biosensing method, where the single- or few-layer Ti3C2 MXene nanosheets functionalized via the specific aptamer by self-assembly were used as electrode modifiers for a glassy carbon electrode (aptamer/Ti3C2 MXene/GCE). Differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), scanning electron microscopy (SEM), atomic force microscope (AFM), and so on were utilized for electrochemical and morphological characterization. Under the optimized conditions, the constructed aptasensor exhibited excellent performance with a wider linearity to CAP in the range from 10 fM to 1 μM and a low detection limit of 1 fM. Aptamer/Ti3C2 MXene/GCE demonstrated remarkable selectivity over other potentially interfering antibiotics, as well as exceptional reproducibility and stability. In addition, the aptasensor was successfully applied to determine CAP in milk with acceptable recovery values of 96.13% to 108.15% and relative standard deviations below 9%. Therefore, the proposed electrochemical aptasensor is an excellent alternative for determining CAP in food samples.

Funder

National Key Research and Development Program of China

Tianjin Science and Technology planning project

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3