Silencing LY6D Expression Inhibits Colon Cancer in Xenograft Mice and Regulates Colon Cancer Stem Cells’ Proliferation, Stemness, Invasion, and Apoptosis via the MAPK Pathway

Author:

Duan Jinyue1,Wang Yi1ORCID,Chen Yuanyuan1,Wang Yujue1,Li Qisen1,Liu Jinrui1,Fu Changhao2ORCID,Cao Chenyu1,Cong Zhongyi1ORCID,Su Manman1ORCID

Affiliation:

1. Department of Regenerative Medicine, School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China

2. VA Palo Alto Health Care System, Medical School, Stanford University, Palo Alto, CA 94304, USA

Abstract

This study explored the role of lymphocyte antigen 6 family member D (LY6D) in colon cancer stem cells’ (CCSCs) proliferation and invasion. LY6D was knocked down using siRNA, and the down-regulation of LY6D was verified using Western blotting. After LY6D knockdown, CCSCs’ proliferation, stemness, and invasion were suppressed, whereas apoptosis was increased. Gene Ontology (GO) enrichment analysis revealed that the differentially expressed genes (DEGs) between siLY6D and the negative control groups were significantly enriched in the cell–substrate adherens junction, focal adhesion, and cell–substrate junction terms. Meanwhile, the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that the DEGs were significantly enriched in the MAPK pathway. In addition, Western blotting results showed that pBRAF and pERK1/2, cascade kinases of the MAPK pathway, were significantly down-regulated after LY6D knockdown. In addition, nude mice xenograft experiments showed that the siLY6D treatment decreased tumor sizes and weights and improved tumor-bearing mice survival rates compared with the control group. In conclusion, these findings indicate that LY6D, which is highly expressed in CCSCs, is a key factor involved in tumor growth and development and might be a potential cancer marker and therapeutic target for colon cancer.

Funder

Technology Development Plan of Jilin Province

Graduate Innovation Fund of Jilin University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3