Revealing the Combined Effect of Active Sites and Intra-Particle Diffusion on Adsorption Mechanism of Methylene Blue on Activated Red-Pulp Pomelo Peel Biochar

Author:

Wei Fang1ORCID,Jin Shenglong1,Yao Chunyi1,Wang Tianhao1,Zhu Shengpu1,Ma Yabiao1,Qiao Heng1,Shan Linxi1,Wang Rencong1,Lian Xiaoxue1,Tong Xiaoqiang1,Li Yan1,Zhao Qiang1ORCID,Song Weiguo2ORCID

Affiliation:

1. College of Science, Civil Aviation University of China (CAUC), Tianjin 300300, China

2. Laboratory of Molecular Nanostructure and Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

Abstract

Phosphoric acid-activated biochar has been proven to be a promising adsorbent for pollutant removal in an aqueous solution. It is urgent to understand how surface adsorption and intra-particle diffusion synergistically contribute to the adsorption kinetic process of dyes. In this work, we prepared a series of PPC adsorbents (PPCs) from red-pulp pomelo peel under different pyrolysis temperatures (150–350 °C), which have a broad specific surface area range from 3.065 m2/g to 1274.577 m2/g. The active sites on the surface of PPCs have shown specific change laws of decreasing hydroxyl groups and increasing phosphate ester groups occurring as the pyrolysis temperature rises. Both reaction models (PFO and PSO models) and diffusion models (intra-particle diffusion models) have been applied to simulate the adsorption experimental data to verify the hypothesis deduced from the Elovich model. PPC-300 exhibits the highest adsorption capacity of MB (423 mg/g) under given conditions. Due to its large quantities of active sites on the external and internal surfaces (1274.577 m2/g), a fast adsorption equilibrium can be achieved within 60 min (with an initial MB concentration of 100 ppm). PPC-300 and PPC-350 also exhibit an intra-particle-diffusion-controlled adsorption kinetic process with a low initial MB concentration (100 ppm) or at the very beginning and final stage of adsorption with a high initial MB concentration (300 ppm) at 40 °C, considering that the diffusion is likely hindered by adsorbate molecules through internal pore channels at the middle stage of adsorption in these cases.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3