Abstract
Oxidative stress is involved in the pathophysiology of many neurodegenerative diseases. Lichens have antioxidant properties attributed to their own secondary metabolites with phenol groups. Very few studies delve into the protective capacity of lichens based on their antioxidant properties and their action mechanism. The present study evaluates the neuroprotective role of Dactylina arctica, Nephromopsis stracheyi, Tuckermannopsis americana and Vulpicida pinastri methanol extracts in a hydrogen peroxide (H2O2) oxidative stress model in neuroblastoma cell line “SH-SY5Y cells”. Cells were pretreated with different concentrations of lichen extracts (24 h) before H2O2 (250 µM, 1 h). Our results showed that D. arctica (10 µg/mL), N. stracheyi (25 µg/mL), T. americana (50 µg/mL) and V. pinastri (5 µg/mL) prevented cell death and morphological changes. Moreover, these lichens significantly inhibited reactive oxygen species (ROS) production and lipid peroxidation and increased superoxide dismutase (SOD) and catalase (CAT) activities and glutathione (GSH) levels. Furthermore, they attenuated mitochondrial membrane potential decline and calcium homeostasis disruption. Finally, high-performance liquid chromatography (HPLC) analysis revealed that the secondary metabolites were gyrophoric acid and lecanoric acid in D. artica, usnic acid, pinastric acid and vulpinic acid in V. pinastri, and alectoronic acid in T. americana. In conclusion, D. arctica and V. pinastri are the most promising lichens to prevent and to treat oxidative stress-related neurodegenerative diseases.
Funder
Spanish Ministry of Science, Innovation and Universities
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献