Anti-Symmetric Electromagnetic Interactions’ Response in Electron Circular Dichroism and Chiral Origin of Periodic, Complementary Twisted Angle in Twisted Bilayer Graphene

Author:

Dai Guoqiang1,Chen Xiangtao2,Jin Ying1,Wang Jingang1ORCID

Affiliation:

1. College of Science, Liaoning Petrochemical University, Fushun 113001, China

2. School of Physics, Northeast Normal University, Changchun 130024, China

Abstract

Many novel physical properties of twisted bilayer graphene have been discovered and studied successively, but the physical mechanism of the chiral modulation of BLG by a twisted angle lacks theoretical research. In this work, the density functional theory, the wavefunction analysis of the excited state, and the quantum theory of atoms in molecules are used to calculate and analyze the anti-symmetric chiral characteristics of zigzag-edge twisted bilayer graphene quantum dots based on periodic complementary twisted angles. The analysis of the partial density of states shows that Moiré superlattices can effectively adjust the contribution of the atomic basis function of the fragment to the transition dipole moment. The topological analysis of electron density indicates that the Moiré superlattices structure can enhance the localization of the system, increasing the electron density of the Moiré central ring, reducing the electron surge capacity in general and inducing the reversed helical properties of the top and underlying graphene, which can be used as the origin of the chiral discrimination; it also reveals the mole in the superlattice chiral physical mechanism. On this basis, we will also study the nonlinear optical properties of twisted bilayer graphene based on a twisted angle.

Funder

Liaoning Provincial Natural Science Foundation

2021 College Students innovation and Entrepreneurship Training Program

Talent Introduction Program of Liaoning Petrochemical University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3