Coronavirus Infection-Associated Cell Death Signaling and Potential Therapeutic Targets

Author:

Yapasert RittibetORCID,Khaw-on PatompongORCID,Banjerdpongchai Ratana

Abstract

COVID-19 is the name of the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that occurred in 2019. The virus–host-specific interactions, molecular targets on host cell deaths, and the involved signaling are crucial issues, which become potential targets for treatment. Spike protein, angiotensin-converting enzyme 2 (ACE2), cathepsin L-cysteine peptidase, transmembrane protease serine 2 (TMPRSS2), nonstructural protein 1 (Nsp1), open reading frame 7a (ORF7a), viral main protease (3C-like protease (3CLpro) or Mpro), RNA dependent RNA polymerase (RdRp) (Nsp12), non-structural protein 13 (Nsp13) helicase, and papain-like proteinase (PLpro) are molecules associated with SARS-CoV infection and propagation. SARS-CoV-2 can induce host cell death via five kinds of regulated cell death, i.e., apoptosis, necroptosis, pyroptosis, autophagy, and PANoptosis. The mechanisms of these cell deaths are well established and can be disrupted by synthetic small molecules or natural products. There are a variety of compounds proven to play roles in the cell death inhibition, such as pan-caspase inhibitor (z-VAD-fmk) for apoptosis, necrostatin-1 for necroptosis, MCC950, a potent and specific inhibitor of the NLRP3 inflammasome in pyroptosis, and chloroquine/hydroxychloroquine, which can mitigate the corresponding cell death pathways. However, NF-κB signaling is another critical anti-apoptotic or survival route mediated by SARS-CoV-2. Such signaling promotes viral survival, proliferation, and inflammation by inducing the expression of apoptosis inhibitors such as Bcl-2 and XIAP, as well as cytokines, e.g., TNF. As a result, tiny natural compounds functioning as proteasome inhibitors such as celastrol and curcumin can be used to modify NF-κB signaling, providing a responsible method for treating SARS-CoV-2-infected patients. The natural constituents that aid in inhibiting viral infection, progression, and amplification of coronaviruses are also emphasized, which are in the groups of alkaloids, flavonoids, terpenoids, diarylheptanoids, and anthraquinones. Natural constituents derived from medicinal herbs have anti-inflammatory and antiviral properties, as well as inhibitory effects, on the viral life cycle, including viral entry, replication, assembly, and release of COVID-19 virions. The phytochemicals contain a high potential for COVID-19 treatment. As a result, SARS-CoV-2-infected cell death processes and signaling might be of high efficacy for therapeutic targeting effects and yielding encouraging outcomes.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3