Injection Molded Novel Biocomposites from Polypropylene and Sustainable Biocarbon

Author:

Abdelwahab Mohamed A.ORCID,Rodriguez-Uribe Arturo,Misra Manjusri,K. Mohanty Amar

Abstract

Achieving sustainability in composite materials for high-performance applications is a key issue in modern processing technologies. In this work, the structure-property relationships of injection molded polypropylene (PP)/biocarbon composites were investigated with a focus on the thermal properties and specific emphasis on the coefficient of linear thermal expansion (CLTE). Biocomposites were produced using 30 wt.% biocarbon in a PP matrix, and two different sources of biocarbon produced at ~650 and 900 °C were used. The overall results were compared with 30 wt.% glass- and talc-filled PP composites. Due to the lamellar morphology of the talc developed during the extrusion-injection molding processing, talc-filled composites showed an increase in the CLTE in the normal direction (ND), and a reduction in the flow direction (FD) with respect to the neat polymer. Glass fiber composites also showed an improvement in the CLTE with respect to the neat polymer. However, the biocarbon-based composites showed the best properties in the ND, with improved values in biocarbon produced at higher temperature. The FD values for both biocarbon composites were improved with respect to the matrix, while biocarbon created at lower temperature showed slightly lower expansion values. A comprehensive explanation of these overall phenomena is supported by a series of morphological, thermal, mechanical and rheological tests.

Funder

Natural Sciences and Engineering Research Council of Canada

Ontario Centres of Excellence

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3