Author:
Lu Fangjie,Wang Qinqin,Zhu Mingyuan,Dai Bin
Abstract
The poor stability of carbon materials doped with nitrogen limited their development in acetylene hydrochlorination. Therefore, investigating the deactivation reasons of carbon catalysts and researching regeneration methods became the research focus. Herein, carbon-nitrogen materials were synthesized by one-step pyrolysis, which using biomass materials with high nitrogen content, the synthesized material was used in an acetylene hydrochlorination reaction. The acetylene conversion rate of D-GH-800 catalyst was up to 99%, but the catalytic activity decreased by 30% after 60 h reaction. Thermogravimetric analysis results showed that the coke content was 5.87%, resulting in catalyst deactivation. Temperature-programmed desorption verified that the deactivation was due to the strong adsorption and difficult desorption of acetylene by the D-GH-800 catalyst, resulting in the accumulation of acetylene on the catalyst surface to form carbon polymers and leading to the pore blockage phenomenon. Furthermore, based on the catalyst deactivation by carbon accumulation, we proposed a new idea of regeneration by ZnCl2 activation to eliminate carbon deposition in the pores of the deactivated catalyst. As a result, the activity of D-GH-800 was recovered, and lifetime was also extended. Our strategy illustrated the mechanism of carbon deposition, and the recoverability of the catalyst has promising applications.
Funder
Taishan Scholars Program of Shandong Province
Science and Technology Project of Xinjiang Bingtuan supported by the Central Government
National Natural Science Funds of China
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献