Correction of Temperature Variation with Independent Water Samples to Predict Soluble Solids Content of Kiwifruit Juice Using NIR Spectroscopy

Author:

Kaur Harpreet,Künnemeyer RainerORCID,McGlone Andrew

Abstract

Using the framework of aquaphotomics, we have sought to understand the changes within the water structure of kiwifruit juice occurring with changes in temperature. The study focuses on the first (1300–1600 nm) and second (870–1100 nm) overtone regions of the OH stretch of water and examines temperature differences between 20, 25, and 30 °C. Spectral data were collected using a Fourier transform–near-infrared spectrometer with 1 mm and 10 mm transmission cells for measurements in the first and second overtone region, respectively. Water wavelengths affected by temperature variation were identified. Aquagrams (water spectral patterns) highlight slightly different responses in the first and second overtone regions. The influence of increasing temperature on the peak absorbance of the juice was largely a lateral wavelength shift in the first overtone region and a vertical amplitude shift in the second overtone region of water. With the same data set, we investigated the use of external parameter orthogonalisation (EPO) and extended multiple scatter correction (EMSC) pre-processing to assist in building temperature-independent partial least square regression models for predicting soluble solids concentration (SSC) of kiwifruit juice. The interference component selected for correction was the first principal component loading measured using pure water samples taken at the same three temperatures (20, 25, and 30 °C). The results show that the EMSC method reduced SSC prediction bias from 0.77 to 0.1 °Brix in the first overtone region of water. Using the EPO method significantly reduced the prediction bias from 0.51 to 0.04 °Brix, when applying a model made at one temperature (30 °C) to measurements made at another temperature (20 °C) in the second overtone region of water.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference31 articles.

1. Water, hydration, and health

2. Water;DeMan,1999

3. Absorption and attenuation of visible and near-infrared light in water: dependence on temperature and salinity

4. Aquaphotomics: Water in the biological and aqueous world scrutinised with invisible light;Tsenkova;Spectrosc. Eur.,2010

5. Dry-matter—a better predictor of the post-storage soluble solids in apples?

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3