Treatment of Coking Wastewater Using Hydrodynamic Cavitation Coupled with Fenton Oxidation Process

Author:

Deng Dongmei1,Huang Ting1ORCID,Li Qing1,Huang Yongchun1,Sun Yufei1,Liang Jieliang2,Li Jintian2

Affiliation:

1. Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China

2. Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou 510631, China

Abstract

Effective and economical processes for the advanced treatment of coking wastewater were urgently needed to reduce the persistent organic pollutants of external drainage. In the present work, we investigated the degradation of organic pollutants in coking wastewater through IHC/FO (imping stream hydrodynamic cavitation (IHC) coupled with the Fenton oxidation (FO) process) and IHC alone for their feasibility in the advanced treatment of coking wastewater. To select the optimum parameters, attention was paid to the effects of main operation conditions including inlet fluid pressure, medium temperature, initial pH, reaction time, and initial Fe(II) and initial H2O2 concentrations. The results showed that the effects of conditions that need energy to be maintained (such as initial pH and inlet pressure) on the organic pollutant removal efficiency through IHC/FO were less pronounced than those through IHC alone. Moreover, the application of IHC/FO could remove more organic pollutants from coking wastewater than IHC even at an energy-efficient condition. For example, the highest COD removal efficiency of 12.5% was achieved in the IHC treatment at 0.4 MPa, pH 3, and 60 min for the reaction time. In the case of IHC/FO, the maximum COD removal of 33.2% was obtained at pH 7, 0.1 MPa, 12 mmol/L H2O2, and 3 mmol/L Fe2+ after reacting for 15 min. The ultraviolet and visible spectrophotometry (UV-Vis) absorption spectra and gas chromatography and mass spectrometry (GC–MS) analysis further revealed that the kinds and amounts of pollutants (especially those that had benzenes) remaining in water treated through IHC/FO were much fewer and smaller than in water treated through IHC alone. The better performances of IHC/FO than IHC alone were likely related to the more hydroxyl radicals produced through IHC/FO. Taken together, our findings indicate that IHC/FO has great application potential in the advanced treatment of coking wastewater.

Funder

Guangxi Science Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3