Investigation on Adsorption and Decomposition Properties of CL-20/FOX-7 Molecules on MgH2(110) Surface by First-Principles

Author:

Yang Zhang,Fengqi Zhao,Siyu Xu,Fusheng Yang,Ergang Yao,Xiaobing Ren,Zhen Wu,Zaoxiao Zhang

Abstract

Metal hydrides are regarded as promising hydrogen-supplying fuel for energetic materials while CL-20 (Hexanitrohexaazaisowurtzitane) and FOX-7 (1,1-Diamino-2,2-dinitroethylene) are typical principal components commonly used in energetic materials. Hence, it is interesting to explore the interactions between them for development of new energetic systems. In this paper, the adsorption and decomposition of CL-20 or FOX-7 molecules on the MgH2 (110) crystal surface were investigated by employing the First-Principles. In total, 18 adsorption configurations for CL-20/MgH2 (110) and 12 adsorption configurations for FOX-7/MgH2 (110) were considered. The geometric parameters for the configurations, adsorption energies, charge transfer, density of states, and decomposition mechanism were obtained and analyzed. In most of the configurations, chemical adsorption will occur. Moreover, the orientation of the nitro-group in CL-20 or FOX-7 with regard to the MgH2 (110) surface plays an important role on whether and how the energetic molecule decomposes. The adsorption and decomposition of CL-20 or FOX-7 on MgH2 could be attributed to the strong charge transfer between Mg atoms in the first layer of MgH2 (110) surface and oxygen as well as nitrogen atoms in the nitro-group of CL-20 or FOX-7 molecules.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference59 articles.

1. Application of hydrogen-storage materials in high-energy solid rocket propellant;Yang;Chin. J. Explos. Propellants,2015

2. Nanoscale hydrogen-storage materials: Recent progresses and perspectives for applications in propellants;Yang;Chin. J. Energetic Mater.,2016

3. Application of Mg-based hydrogen storage materials in energetic materials;Chen;Chin. J. Explos. Propellants,2016

4. Hydrogen storage materials applied in emulsion explosives;Cheng;Chin. J. Energetic Mater.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3