A Series of Isatin-Hydrazones with Cytotoxic Activity and CDK2 Kinase Inhibitory Activity: A Potential Type II ATP Competitive Inhibitor

Author:

Al-Salem Huda S.,Arifuzzaman Md,Alkahtani Hamad M.ORCID,Abdalla Ashraf N.ORCID,Issa Iman S.,Alqathama AljawharahORCID,Albalawi Fatemah S.,Rahman A. F. M. MotiurORCID

Abstract

Isatin derivatives potentially act on various biological targets. In this article, a series of novel isatin-hydrazones were synthesized in excellent yields. Their cytotoxicity was tested against human breast adenocarcinoma (MCF7) and human ovary adenocarcinoma (A2780) cell lines using MTT assay. Compounds 4j (IC50 = 1.51 ± 0.09 µM) and 4k (IC50 = 3.56 ± 0.31) showed excellent activity against MCF7, whereas compound 4e showed considerable cytotoxicity against both tested cell lines, MCF7 (IC50 = 5.46 ± 0.71 µM) and A2780 (IC50 = 18.96± 2.52 µM), respectively. Structure-activity relationships (SARs) revealed that, halogen substituents at 2,6-position of the C-ring of isatin-hydrazones are the most potent derivatives. In-silico absorption, distribution, metabolism and excretion (ADME) results demonstrated recommended drug likeness properties. Compounds 4j (IC50 = 0.245 µM) and 4k (IC50 = 0.300 µM) exhibited good inhibitory activity against the cell cycle regulator CDK2 protein kinase compared to imatinib (IC50 = 0.131 µM). A molecular docking study of 4j and 4k confirmed both compounds as type II ATP competitive inhibitors that made interactions with ATP binding pocket residues, as well as lacking interactions with active state DFG motif residues.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference69 articles.

1. Cancer Control: Knowledge into ACTION http://www.who.int/cancer/modules/en/

2. Latest Global Cancer Data https://www.iarc.fr/featured-news/latestglobal-cancer-data-cancer-burden-rises-to-18-1-million-new-casesand-9-6-million-cancer-deaths-in-2018/

3. Cancer Tomorrow https://gco.iarc.fr/tomorrow/graphic-isotype?type=0&population=900&mode=population&sex=0&cancer=39&age_group=value&apc_male=0&apc_female=0

4. In silico and in vitro metabolism of ribociclib: a mass spectrometric approach to bioactivation pathway elucidation and metabolite profiling

5. Phase I metabolic profiling and unexpected reactive metabolites in human liver microsome incubations of X-376 using LC-MS/MS: bioactivation pathway elucidation and in silico toxicity studies of its metabolites

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3