Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease that causes memory and cognitive decline as well as behavioral problems. It is a progressive and well recognized complex disease; therefore, it is very urgent to develop novel and effective anti-AD drugs. In this study, a series of novel isochroman-4-one derivatives from natural (±)-7,8-dihydroxy-3-methyl-isochroman-4-one [(±)-XJP] were designed and synthesized, and their anti-AD potential was evaluated. Among them, compound 10a [(Z)-3-acetyl-1-benzyl-4-((6,7-dimethoxy-4-oxoisochroman-3-ylidene)methyl)pyridin-1-ium bromide] possessed potent anti-acetylcholinesterase (AChE) activity as well as modest antioxidant activity. Further molecular modeling and kinetic investigations revealed that compound 10a was a dual-binding inhibitor that binds to both catalytic anionic site (CAS) and peripheral anionic site (PAS) of the enzyme AChE. In addition, compound 10a exhibited low cytotoxicity and moderate anti-Aβ aggregation efficacy. Moreover, the in silico screening suggested that these compounds could pass across the blood–brain barrier with high penetration. These findings show that compound 10a was a promising lead from a natural product with potent AChE inhibitory activity and deserves to be further developed for the prevention and treatment of AD.
Funder
National Natural Science Foundation of China
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献