Elastic Properties of Alloyed Cementite M3X (M = Fe, Cr; X = C, B) Phases from First-Principle Calculations and CALPHAD Model

Author:

Huang Yongxing1,Lin Yang1,Wang Guangchi1,Jiang Yehua1,Chong Xiaoyu1

Affiliation:

1. Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China

Abstract

Fe-Cr-C-B wear-resistant steels are widely used as wear-resistant alloys in harsh environments. The M3X (M = Fe, Cr; X = C, B) cementite-type material is a commonly used strengthening phase in these alloys. This study investigated the mechanical properties of cementite (Fe, Cr)3(C, B) using the first-principle density functional theory. We constructed crystal structures of (Fe, Cr)3(C, B) with different concentrations of Cr and B. The bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio, and hardness of the material were calculated, and a comprehensive mechanical property database based on CALPHAD modeling of the full composition was established. The optimal concentrations of the (Fe, Cr)3(C, B) phase were systematically evaluated across its entire composition range. The material exhibited the highest hardness, shear modulus, and Young’s modulus at Cr and B concentrations in the range of 70–95 at% and 40 at%, respectively, rendering it difficult to compress and relatively poor in machinability. When the B content exceeded 90 at%, and the Cr content was zero, the shear modulus and hardness were low, resulting in poor resistance to deformation, reduced stiffness, and ease of plastic processing. This study provides an effective alloying strategy for balancing the brittleness and toughness of (Fe, Cr)3(C, B) phases.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3