Abstract
Enzyme-aid maceration is carried out in most modern winemaking industries with a range of positive impacts on wine production. However, inconsistencies in enzyme efficiency are an issue complicated by unclear targets (limited information available on berry cell wall architecture of different cultivars) and the complex wine environment (i.e., fermenting must). Recent studies have been performed to develop a clearer picture of grape cell wall structures, maceration effects, and interactions between important wine compounds and grape-derived polysaccharides. This review highlights critically important recent studies on grape berry cell wall changes during ripening, the importance of enzymes during maceration (skin contact phase) and deconstruction processes that occur during alcoholic fermentation. The novelty of the Comprehensive Microarray Polymer Profiling (CoMPP) technique using cell wall probes (e.g., antibodies) as a method for following cell wall derived polymers during different biological and biotechnological processes is discussed. Recent studies, using CoMPP together with classical analytical methods, confirmed the developmental pattern of berry cell wall changes (at the polymer level) during grape ripening. This innovative technique were also used to track enzyme-assisted depectination of grape skins during wine fermentation and determine how this influence the release of wine favourable compounds. Furthermore, polysaccharides (e.g., arabinogalactan proteins) present in the final wine could be identified. Overall, CoMPP provides a much more enriched series of datasets compared to traditional approaches. Novel insights and future studies investigating grape cell wall and polyphenol interactions, and the tailoring of enzyme cocktails for consistent, effective and “customized” winemaking is advanced and discussed.
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献