Abstract
Hollow mesoporous silica nanoparticles have been widely applied as a carrier material in the molecular imprinting process because of their excellent properties, with high specific surface area and well-defined active centers. However, these kinds of materials face the inevitable problem that they have low mass transfer efficiency and cannot be conveniently recycled. In order to solve this problem, this work has developed a composite hydrogel microsphere (MMHSG) encapsulated with hollow mesoporous imprinted nanoparticles for the selective extraction of 2’-deoxyadenosine (dA). Subsequently, the hollow mesoporous imprinted polymers using dA as template molecule and synthesized 5-(2-carbomethoxyvinyl)-2′-deoxyuridine (AcrU) as functional monomer were encapsulated in hydrogel. MMHSG displayed good performance in specifically recognizing and quickly separating dA, whereas no imprinting effect was observed among 2′-deoxyguanosine (dG), deoxycytidine (dC), or 5′-monophosphate disodium salt (AMP). Moreover, the adsorption of dA by MMHSG followed chemisorption and could reach adsorption equilibrium within 60 min; the saturation adsorption capacity was 20.22 μmol·g−1. The introduction of AcrU could improve selectivity through base complementary pairing to greatly increase the imprinting factor to 3.79. Therefore, this was a successful attempt to combine a hydrogel with hollow mesoporous silica nanoparticles and molecularly imprinted material.
Funder
National Natural Science Foundation of China
Open Research Fund Program of the Key Laboratory of Functional Molecular Solids, Ministry of Education
Open Research Fund Program of the Beijing Key Lab of Plant Resource Research and Development
State Key Laboratory Foundation of Efficient Utilization for Low-Grade Phosphate Rock and Its Associated Resources
Open Funding Project of the National Key Laboratory of Biochemical Engineering
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献