Heterogeneous Photocatalysis as a Potent Tool for Organic Synthesis: Cross-Dehydrogenative C–C Coupling of N-Heterocycles with Ethers Employing TiO2/N-Hydroxyphthalimide System under Visible Light

Author:

Lopat’eva Elena R.ORCID,Krylov Igor B.ORCID,Segida Oleg O.ORCID,Merkulova Valentina M.,Ilovaisky Alexey I.,Terent’ev Alexander O.ORCID

Abstract

Despite the obvious advantages of heterogeneous photocatalysts (availability, stability, recyclability, the ease of separation from products and safety) their application in organic synthesis faces serious challenges: generally low efficiency and selectivity compared to homogeneous photocatalytic systems. The development of strategies for improving the catalytic properties of semiconductor materials is the key to their introduction into organic synthesis. In the present work, a hybrid photocatalytic system involving both heterogeneous catalyst (TiO2) and homogeneous organocatalyst (N-hydroxyphthalimide, NHPI) was proposed for the cross-dehydrogenative C–C coupling of electron-deficient N-heterocycles with ethers employing t-BuOOH as the terminal oxidant. It should be noted that each of the catalysts is completely ineffective when used separately under visible light in this transformation. The occurrence of visible light absorption upon the interaction of NHPI with the TiO2 surface and the generation of reactive phthalimide-N-oxyl (PINO) radicals upon irradiation with visible light are considered to be the main factors determining the high catalytic efficiency. The proposed method is suitable for the coupling of π-deficient pyridine, quinoline, pyrazine, and quinoxaline heteroarenes with various non-activated ethers.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3