Heterogeneous Brønsted Catalysis in the Solvent-Free and Multigram-Scale Synthesis of Polyalcohol Acrylates: The Case Study of Trimethylolpropane Triacrylate

Author:

Melchiorre Massimo12ORCID,Cucciolito Maria E.13,Esposito Roberto13ORCID,Silvestro Simone1,Ruffo Francesco13ORCID

Affiliation:

1. Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia 21, 80126 Napoli, Italy

2. ISusChem Srl, Piazza Carità 32, 80134 Napoli, Italy

3. Consorzio Interuniversitario di Reattività Chimica e Catalisi (CIRCC), Via Celso Ulpiani 27, 70126 Bari, Italy

Abstract

This article presents a thorough investigation into the synthesis of trimethylolpropane triacrylate (TMPTA) via the esterification reaction of trimethylolpropane (TMP) with acrylic acid using Amberlite™ 120 IR (H+), Amberlyst® 15, and Dowex™ 50WX8 resins as heterogeneous catalysts. Preliminary comparative tests explored the impact of air flow on water removal during the reaction and different acid-to-alcohol molar ratios (3:1, 6:1, or 9:1 mol:mol). The findings revealed that introducing air significantly enhances TMPTA yield and -OH group conversion, particularly at a 6:1 acid-to-alcohol molar ratio. Based on cost considerations, Amberlite™ 120 IR (H+) was selected as the preferred catalyst for further optimization. This included evaluating the effect of catalyst loading (10%, 5.0%, and 2.5% w/wtot) and assessing the impact of a pre-drying process on resin efficiency. The study concluded that optimal conditions did not necessitate drying, requiring 120 °C, a catalyst loading of 10% w/wtot, a 4 h reaction time, an acid:alcohol ratio of 6:1 mol:mol, the presence of MEHQ (0.1% mol/molAA), and air bubbling at 6 ± 1 Nl/h. Catalyst recycling was effectively implemented with a slight reduction in catalytic activity over consecutive runs. Furthermore, the study explored a scaled-up system with a mechanical stirrer, demonstrating the potential for multi-hundred grams scale-up. Considerations for optimizing the air flow stripping system are also highlighted. In summary, this study provides valuable insights into designing and optimizing the esterification process for TMPTA synthesis, laying the foundation for potential industrial applications.

Publisher

MDPI AG

Reference38 articles.

1. Interfacial catalysts for sustainable chemistry: Advances on atom and energy efficient glycerol conversion to acrylic acid;Jin;Green Chem.,2021

2. Glycerol as a potential renewable raw material for acrylic acid production;Sun;Green Chem.,2017

3. Highly Efficient Biobased Synthesis of Acrylic Acid;Hermens;Angew. Chem. Int. Ed.,2022

4. Acrylic acid synthesis from lactic acid over hydroxyapatite catalysts with various cations and anions;Matsuura;Catal. Today,2014

5. Bhagyashri, P., Pratik, M., and Eswara, P. (2023, August 31). Acrylic Acid Market Outlook—2021–2030. Available online: https://www.alliedmarketresearch.com/acrylic-acid-market.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3