Study on the Effect of Cations on the Surface Energy of Nano-SiO2 Particles for Oil/Gas Exploration and Development Based on the Density Functional Theory

Author:

Ni Jun1,Zhang Lei2ORCID,Wang Chengjun3,Wang Weibo1,Jin Ge3

Affiliation:

1. Shaanxi Yanchang Petroleum (Group) Co., Ltd., Xi’an 710075, China

2. Key Laboratory of Theory and Technology of Petroleum Exploration and Development in Hubei Province, Department of Petroleum Engineering, China University of Geosciences (Wuhan), Wuhan 430074, China

3. College of Chemistry and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China

Abstract

Although nano SiO2 exhibits excellent application potential in the field of oil and gas exploration and development, such as drilling fluid, enhanced oil/gas recovery, etc., it is prone to agglomeration and loses its effectiveness due to the action of cations in saline environments of oil and gas reservoirs. Therefore, it is crucial to study the mechanism of the change in energy between nano SiO2 and cations for its industrial application. In this paper, the effect of cations (Na+, K+, Ca2+, and Mg2+) on the surface energy of nano SiO2 particles is investigated from the perspective of molecular motion and electronic change by density functional theory. The results are as follows: Due to the electrostatic interactions, cations can migrate towards the surface of nano SiO2 particles. During the migration process, monovalent cations are almost unaffected by water molecules, and they can be directly adsorbed on the surface by nano SiO2 particles. However, when divalent cations migrate from a distance to the surface of nano SiO2 particles, they can combine with water molecules to create an energy barrier, which can prevent them from moving forward. When divalent cations break through the energy barrier, the electronic kinetic energy between them and nano SiO2 particles changes more strongly, and the electrons carried by them are more likely to break through the edge of the atomic nucleus and undergo charge exchange with nano SiO2 particles. The change in interaction energy is more intense, which can further disrupt the configuration stability of nano SiO2. The interaction energy between cations and nano SiO2 particles mainly comes from electrostatic energy, followed by Van der Waals energy. From the degree of influence of four cations on nano SiO2 particles, the order from small to large is as follows: K+ < Na+ < Mg2+ < Ca2+. The research results can provide a theoretical understanding of the interaction between nano SiO2 particles and cations during the application of nano SiO2 in the field of oil and gas exploration and development.

Funder

National Natural Science Foundation of China

Innovation Capability Support of Shaanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3