Author:
Yin ,Ma ,Liang ,Wang ,Sun ,Zhang ,Jia
Abstract
Although farrerol, a characteristically bioactive constituent of Rhododendron dauricum L., exhibits extensive biological and pharmacological activities (e.g., anti-oxidant, anti-immunogenic, and anti-angiogenic) as well as a high drug development potential, its metabolism remains underexplored. Herein, we employed ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry coupled with multiple data post-processing techniques to rapidly identify farrerol metabolites produced in vivo (in rat blood, bile, urine and feces) and in vitro (in rat liver microsomes). As a result, 42 in vivo metabolites and 15 in vitro metabolites were detected, and farrerol shown to mainly undergo oxidation, reduction, (de)methylation, glucose conjugation, glucuronide conjugation, sulfate conjugation, N-acetylation and N-acetylcysteine conjugation. Thus, this work elaborates the metabolic pathways of farrerol and reveals the potential pharmacodynamics forms of farrerol.
Funder
National Natural Science Foundation of China
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献