Abstract
A series of novel 2-pyridyl, 4-morpholinyl substituted thiazolo[5,4-b]pyridine analogues have been designed and synthesized in this paper. These thiazolo[5,4-b]pyridines were efficiently prepared in seven steps from commercially available substances in moderate to good yields. All of these N-heterocyclic compounds were characterized by nuclear magnetic resonance (NMR) and high-resolution mass spectrometry (HRMS) analysis and tested for phosphoinositide 3-kinase (PI3K) enzymatic assay. The results indicated that these N-heterocyclic compounds showed potent PI3K inhibitory activity, and the IC50 of a representative compound (19a) could reach to 3.6 nm. The structure−activity relationships (SAR) study showed that sulfonamide functionality was important for PI3Kα inhibitory activity, and 2-chloro-4-florophenyl sulfonamide (19b), or 5-chlorothiophene-2-sulfonamide (19c) showed potent inhibitory activity with a nanomolar IC50 value. The pyridyl attached to thiazolo[5,4-b]pyridine was another key structural unit for PI3Kα inhibitory potency, and replacement by phenyl lead to a significant decrease in activity. Enzymatic Inhibition results showed that compound 19a inhibited PI3Kα, PI3Kγ, or PI3Kδ with a nanomolar IC50 value, but its inhibitory activity on PI3Kβ was approximately 10-fold reduced. Further docking analysis revealed that the N-heterocyclic core of compound 19a was directly involved in the binding to the kinase through the key hydrogen bonds interaction.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献