Graphene-Like Porous ZnO/Graphene Oxide Nanosheets for High-Performance Acetone Vapor Detection

Author:

Wang Hongwu,Wang Ding,Tian Liang,Li HuijunORCID,Wang Ping,Ou Nanquan,Wang Xianying,Yang Junhe

Abstract

In order to obtain acetone sensor with excellent sensitivity, selectivity, and rapid response/recovery speed, graphene-like ZnO/graphene oxide (GO) nanosheets were synthesized using the wet-chemical method with an additional calcining treatment. The GO was utilized as both the template to form the two-dimensional (2-D) nanosheets and the sensitizer to enhance the sensing properties. Sensing performances of ZnO/GO nanocomposites were studied with acetone as a target gas. The response value could reach 94 to 100 ppm acetone vapor and the recovery time could reach 4 s. The excellent sensing properties were ascribed to the synergistic effects between ZnO nanosheets and GO, which included a unique 2-D structure, large specific surface area, suitable particle size, and abundant in-plane mesopores, which contributed to the advance of novel acetone vapor sensors and could provide some references to the synthesis of 2-D graphene-like metals oxide nanosheets.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3