Abstract
How to rapidly and accurately screen bioactive components from complex natural products remains a major challenge. In this study, a screening platform for pancreatic lipase (PL) inhibitors was established by combining magnetic beads-based ligand fishing and high-resolution bioassay profiling. This platform was well validated using a mixture of standard compounds, i.e., (-)- epigallocatechin gallate (EGCG), luteolin and schisandrin. The dose–effect relationship of high-resolution bioassay profiling was demonstrated by the standard mixture with different concentrations for each compound. The screening of PL inhibitors from green tea extract at the concentrations of 0.2, 0.5 and 1.0 mg/mL by independent high-resolution bioassay profiling was performed. After sample pre-treatment by ligand fishing, green tea extract at the concentration of 0.2 mg/mL was specifically enriched and simplified, and consequently screened through the high-resolution bioassay profiling. As a result, three PL inhibitors, i.e., EGCG, (-)-Gallocatechin gallate (GCG) and (-)-Epicatechin gallate (ECG), were rapidly identified from the complex matrix. The established platform proved to be capable of enriching affinity binders and eliminating nonbinders in sample pre-treatment by ligand fishing, which overcame the technical challenges of high-resolution bioassay profiling in the aspects of sensitivity and resolution. Meanwhile, the high-resolution bioassay profiling possesses the ability of direct bioactive assessment, parallel structural analysis and identification after separation. The established platform allowed more accurate and rapid screening of PL inhibitors, which greatly facilitated natural product-based drug screening.
Funder
National Natural Science Foundation of China
Science and Technology Planning Project of Guangdong Province
Guangdong Provincial Basic and Applied Basic Research Fund Joint Fund Youth Fund Project
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献