In Situ Synthesis of 3D BiOCl–Graphene Aerogel and Synergistic Effect by Photo-Assisted Activation of Persulfate for Methyl Orange Degradation

Author:

Li Yukun1,Zhang Dan2,Zhang Yongshu1,Chao Cong1,Chen Qishi1,Yao Sen1,Liu Cuixia1

Affiliation:

1. School of Energy and Environmental Engineering, Zhongyuan University of Technology, Zhengzhou 450007, China

2. Science and Technology Innovation Coordination Service Center of Laiwu District, Jinan 271100, China

Abstract

BiOCl/graphene aerogel graphene (BGA) was successfully obtained by in situ hydrothermal synthesis, and the chemical, structural, morphological, and photocatalytic properties were systematically characterized. BGA with the doping amount of BiOCl at 20% (BGA-4) exhibited the optimal activation efficiency for persulfate (PDS) on the degradation of methyl orange (MO) under simulated sunlight (SSL) illumination as compared to the pure graphene (GA) and aerogel composites with different BiOCl content. The influence of various reaction parameters on the MO removal efficiency, such as the reaction system, catalyst activator dose, PDS concentration, BiOCl doping amount, and the initial pH of the solution, was investigated. Under optimum conditions, the catalytic efficiency of BiOCl-doped GA with the mass ratio of 20% (BGA-4) was 5.61 times that of GA. The strengthening effect of BGA-4 benefited from the synergistic effect of 1O2, O2·− and the generation and rapid electron transfer of photo-induced electron (e−) in the BGA-4/SSL/PDS system. Considering the superior stability and recyclability of BGA-4, the BGA-4/SSL/PDS system exhibits great potential in actual wastewater treatment.

Funder

NSFC

China Postdoctoral Science Foundation

Excellent Science and Technology Innovation Team of Henan Normal University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3