Direct Oxidation of Hibiscus cannabinus Stalks to Vanillin Using CeO2 Nanostructure Catalysts

Author:

Ramli Anita12ORCID,Khairul Anuar Nur Akila Syakida Idayu12,Bakhtiar Nur Aielia Amira12,Mohamad Yunus Normawati23ORCID,Mohamed Alina Rahayu4

Affiliation:

1. HICoE Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia

2. Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia

3. Centre of Research in Ionic Liquids (CORIL), Institute of Contaminant Management for Oil and Gas, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia

4. Faculty of Chemical Engineering & Technology, UniMAP, Complex of Academics Jejawi 3, Jejawi, Arau 02600, Perlis, Malaysia

Abstract

Biomass lignin can be used to produce vanillin through an oxidation process. Although its purity is high, the processing time and separation efficiency are not ideal. This research aims to produce vanillin directly from Kenaf stalks without separating the lignin first from the lignocellulosic biomass. This method is greener because it does not require the separation of cellulose and hemicellulose from the biomass, thus minimizing the use of acid and alkaline solutions and saving time. A high oxygen storage capacity and release capacity of ceria as an oxidation catalyst contribute to the reversable redox properties between Ce4+ and Ce3+ in ceria lattice. Cerium oxide nanostructures were synthesized using a hydrothermal method treated under alkaline NaOH, followed by drying at 120 °C for 16 h and calcining at different temperatures between 400 and 600 °C for the direct oxidation of Kenaf stalks to vanillin under microwave irradiation. The catalysts were characterized for their physicochemical properties using XRD, N2 adsorption–desorption isotherms and TEM. All synthesized CeO2 nanostructures showed the presence of diffraction peaks assigned to the presence of cubic fluorite. The N2 adsorption–desorption isotherms showed that all catalysts possess a Type IV isotherm, indicating a mesoporous structure. The TEM image shows the uniform shape of the CeO2 nanostructures, while HRTEM images show that the CeO2 nanostructures are single-crystalline in nature. All catalysts were tested for the direct oxidation of Kenaf stalks using H2O2 as the oxidizing agent in temperatures ranging from 160 to 180 °C for 10–30 min with 0.1–0.3 g catalyst loading under 100–500 W of microwave irradiation. The CeO2-Nps-400 catalyst produced the highest vanillin yields of 3.84% and 4.32% for the direct oxidation of Kenaf stalks and extraction of lignin from Kenaf stalks, respectively. Compared to our earlier study, the highest vanillin yields of 2.90% and 3.70% for direct biomass and extracted lignin were achieved using a Ce/MgO catalyst.

Funder

Malaysian Ministry of Higher Education

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference49 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3