Quantitative Structure–Retention Relationship Analysis of Polycyclic Aromatic Compounds in Ultra-High Performance Chromatography

Author:

Ruggieri Fabrizio1ORCID,Biancolillo Alessandra1ORCID,D’Archivio Angelo Antonio1ORCID,Di Donato Francesca1ORCID,Foschi Martina1ORCID,Maggi Maria Anna2ORCID,Quattrociocchi Claudia1

Affiliation:

1. Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell’Aquila, Via Vetoio, 67100 Coppito, Italy

2. Hortus Novus, Via Campo Sportivo 2, 67050 Canistro, Italy

Abstract

A comparative quantitative structure–retention relationship (QSRR) study was carried out to predict the retention time of polycyclic aromatic hydrocarbons (PAHs) using molecular descriptors. The molecular descriptors were generated by the software Dragon and employed to build QSRR models. The effect of chromatographic parameters, such as flow rate, temperature, and gradient time, was also considered. An artificial neural network (ANN) and Partial Least Squares Regression (PLS-R) were used to investigate the correlation between the retention time, taken as the response, and the predictors. Six descriptors were selected by the genetic algorithm for the development of the ANN model: the molecular weight (MW); ring descriptor types nCIR and nR10; radial distribution functions RDF090u and RDF030m; and the 3D-MoRSE descriptor Mor07u. The most significant descriptors in the PLS-R model were MW, RDF110u, Mor20u, Mor26u, and Mor30u; edge adjacency indice SM09_AEA (dm); 3D matrix-based descriptor SpPosA_RG; and the GETAWAY descriptor H7u. The built models were used to predict the retention of three analytes not included in the calibration set. Taking into account the statistical parameter RMSE for the prediction set (0.433 and 0.077 for the PLS-R and ANN models, respectively), the study confirmed that QSRR models, associated with chromatographic parameters, are better described by nonlinear methods.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3