Fluorescent Molecular Rotors Based on Hinged Anthracene Carboxyimides

Author:

Ni Yanhai1ORCID,Fang Wangjian1ORCID,Olson Mark A.2ORCID

Affiliation:

1. School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China

2. Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX 78412, USA

Abstract

Temperature and viscosity are essential parameters in medicine, environmental science, smart materials, and biology. However, few fluorescent sensor publications mention the direct relationship between temperature and viscosity. Three anthracene carboxyimide-based fluorescent molecular rotors, 1DiAC∙Cl, 2DiAC∙Cl, and 9DiAC∙Cl, were designed and synthesized. Their photophysical properties were studied in various solvents, such as N, N-dimethylacetamide, N, N-dimethylformamide, 1-propanol, ethanol, dimethyl sulfoxide, methanol, and water. Solvent polarizability resulted in a solvatochromism effect for all three rotors and their absorption and emission spectra were analyzed via the Lippert–Mataga equation and multilinear analysis using Kamlet–Taft and Catalán parameters. The rotors exhibited red-shifted absorption and emission bands in solution on account of differences in their torsion angle. The three rotors demonstrated strong fluorescence in a high-viscosity environment due to restricted intramolecular rotation. Investigations carried out under varying ratios of water to glycerol were explored to probe the viscosity-based changes in their optical properties. A good linear correlation between the logarithms of fluorescence intensity and solution viscosity for two rotors, namely 2DiAC∙Cl and 9DiAC∙Cl, was observed as the percentage of glycerol increased. Excellent exponential regression between the viscosity-related temperature and emission intensity was observed for all three investigated rotors.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3