Fabrication of Porous Carbon Nanofibers from Polymer Blends Using Template Method for Electrode-Active Materials in Supercapacitor

Author:

Wang He12,Yao Lan1,Zuo Hongmei1,Ruan Fangtao1,Wang Hongjie13

Affiliation:

1. School of Textile and Garment, Anhui Polytechnic University, Wuhu 241000, China

2. China National Textile and Apparel Council Key Laboratory of Flexible Devices for Intelligent Textile and Apparel, Soochow University, Suzhou 215123, China

3. Advanced Fiber Materials Engineering Research Center of Anhui Province, Anhui Polytechnic University, Wuhu 241000, China

Abstract

Porous carbon nanofibers (PCNFs) with excellent physical and chemical properties have been considered candidate materials for electrodes used in supercapacitors. Herein, we report a facile procedure to fabricate PCNFs through electrospinning blended polymers into nanofibers followed by pre-oxidation and carbonization. Polysulfone (PSF), high amylose starch (HAS), and phenolic resin (PR) are used as three different kinds of template pore-forming agents. The effects of pore-forming agents on the structure and properties of PCNFs have been systematically studied. The surface morphology, chemical components, graphitized crystallization, and pore characteristics of PCNFs are analyzed by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and nitrogen adsorption and desorption test, respectively. The pore-forming mechanism of PCNFs is analyzed by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Fabricated PCNF-R have a specific surface area as high as ~994 m2/g, a total pore volume as high as ~0.75 cm3/g, and a good graphitization degree. When PCNF-R are used as active materials to fabricate into electrodes, the PCNF-R electrodes show a high specific capacitance ~350 F/g, a good rate capability ~72.6%, a low internal resistance ~0.55 Ω, and an excellent cycling stability ~100% after 10,000 charging and discharging cycles. The design of low-cost PCNFs is expected to be widely applicable for the development of high-performance electrodes for an energy storage field.

Funder

the Opening Fund of China National Textile and Apparel Council Key Laboratory of Flexible Devices for Intelligent Textile and Apparel, Soochow University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3