Study on Antibacterial Activity and Structure of Chemically Modified Lysozyme

Author:

Wang Sheng-WeiORCID,Wang Tian-Yi

Abstract

Lysozyme is a natural protein with a good bacteriostatic effect, but its poor inhibition of Gram-negative bacteria limits its development potential as a natural preservative. Therefore, the modification of natural lysozyme to expand the antimicrobial spectrum become the focus of lysozyme study. Egg white lysozyme has low cost, rich content in nature, is easy to obtain, strong stability, and high enzyme activity, so it can be applied in the modification of lysozyme. Egg white lysozyme was modified by chemical methods using organic acids. Caffeic acid and p-coumaric acid in organic acids were used as modifiers, and 1-Ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxy succinimide were used as dehydration condensation agents during modification. A certain degree of modified lysozyme was obtained through appropriate modification conditions. The antibacterial properties and structure of the obtained two organic acid-modified lysozymes were compared with natural enzymes. The results showed that compared with the native enzyme, the activity of modified lysozyme decreased, but the inhibitory effect on Gram-negative bacteria was enhanced. The minimum inhibitory concentrations of caffeic acid-modified enzyme and p-coumaric acid-modified enzyme on Escherichia coli and Pseudomonas aeruginosa were 0.5 mg/mL and 0.75 mg/mL, respectively. However, the antibacterial ability of modified lysozyme to Gram-positive bacteria was lower than that of the natural enzyme. The minimum inhibitory concentration of caffeic acid-modified enzyme and p-coumaric acid-modified enzyme to Staphylococcus aureus and Bacillus subtilis was 1.25 mg/mL. The peak fitting results of the amide-I band absorption peak in the infrared spectroscopy showed that the content of the secondary structure of the two modified enzymes obtained after modification was different from that of natural enzymes. In the study, two organic acids were used to modify egg white lysozyme, which enhanced the enzyme’s inhibition of Gram-negative bacteria, and analyzed the mechanisms for the change in the enzyme’s antibacterial ability from the perspective of the structural change of the modified enzyme, providing a new idea for lysozyme modification.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference30 articles.

1. Potential possibilities of production, modification and practical application of lysozyme;Lesnierowski;Acta Sci. Pol. Technol. Aliment.,2012

2. Purification and properties of lysozyme from a marine strain;Zhang;Ann. Microbiol.,2008

3. Lysozyme and its modified forms: A critical appraisal of selected properties and potential;Lesnierowski;Trends Food Sci. Technol.,2021

4. Modification of Lysozyme with Oleoyl Chloride for Broadening the Antimicrobial Specificity;Evran;Prep. Biochem. Biotechnol.,2010

5. What is new in lysozyme research and its application in food industry? A review;Wu;Food Chem.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3