Effective Transport Recovery of Palladium(II) from Hydrochloric Acid Solutions Using Polymer Inclusion Membrane with Tetrabutylammonium Bromide

Author:

Pospiech Beata1ORCID

Affiliation:

1. Department of Materials Engineering, Czestochowa University of Technology, 19 Armii Krajowej Ave., 42-200 Czestochowa, Poland

Abstract

This article reports on the extraction of palladium(II) from hydrochloric acid (HCl) solutions using polymer inclusion membranes (PIMs) containing tetrabutylammonium bromide (TBAB) as the ion carrier. The membranes were based on cellulose triacetate (CTA) as the polymer support. The main aim of this study is to determine the possibility of TBAB’s application as the effective ion carrier/extractant of Pd(II) from hydrochloric acid solutions. At first, the effect of the hydrochloric acid concentration in the aqueous phase on palladium(II) extraction was investigated. Next, cellulose triacetate membranes with TBAB as the carrier were prepared and applied for the recovery of Pd(II) from HCl solutions. As a result of the investigations, the optimal composition of the receiving phase was determined to be 0.5 M thiourea in 0.1 M hydrochloric acid. The effect of the acid concentration in the source phase was investigated. The results show a linear decrease in the permeability coefficient and initial flux of palladium(II) with an increase in the hydrochloric acid concentration in the source phase. The separation of Pd(II) from Pt(IV) from the hydrochloric acid solution was also studied. The transport rate of Pd(II) was higher than Pt(IV). The separation coefficient SPd/Pt was 1.3. The results show that transport through PIMs with TBAB can be used as an effective method to recover Pd(II) from hydrochloric acid, especially at a low concentration of this acid.

Funder

Faculty of Production Engineering and Materials Technology, Czestochowa University of Technology, Poland

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3