Effect of Sulfuric Acid Corrosion on Flotation Performance of Calcite by Changing Surface Roughness

Author:

Xing Dingquan1,Sun Ruofan1,Ma Shuai1,Wen Heping2,Wang Zhongchi3,Deng Jiushuai1ORCID

Affiliation:

1. Inner Mongolia Research Institute of CUMTB, Key Laboratory of Separation and Processing of Symbiotic-Associated Mineral Resources in Non-Ferrous Metal Industry, Engineering Technology Research Center for Comprehensive Utilization of Rare Earth—Rare Metal—Rare Scattered in Non-Ferrous Metal Industry, School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing 100083, China

2. Yuxi Dahongshan Mining Co., Ltd., Yuxi 653405, China

3. School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China

Abstract

Surface roughness is a crucial factor that affects the flotation performance of minerals. In this study, the effect of sulfuric acid corrosion on the surface roughness of calcite flotation was investigated through microflotation tests, scanning electron microscopy (SEM–EDS), atomic force microscopy (AFM), Fourier transform infrared (FT-IR) spectroscopy, and contact angle analysis. Microflotation test results show that sulfuric acid treatment has a serious negative effect on the floatability of calcite. When the sulfuric acid dosage was 4 mL (3 mol/L), the flotation recovery of calcite was reduced to less than 19%. SEM–EDS and AFM results verified that the sulfuric acid treatment significantly changed the surface morphology of calcite, reduced the average surface roughness and surface area, and reduced the amount of active Ca2+ sites on the calcite surface. As characterized by FT-IR and contact angle analyses, the sulfuric acid treatment enhanced the hydrophilicity of the calcite surface and reduced the amount of sodium oleate adsorbed on the calcite surface. Consequently, sulfuric acid corrosion can reduce the average surface roughness of calcite and have a serious negative effect on the flotation performance of calcite.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3