Novel Imine-Tethering Cationic Surfactants: Synthesis, Surface Activity, and Investigation of the Corrosion Mitigation Impact on Carbon Steel in Acidic Chloride Medium via Various Techniques

Author:

Abd El-Lateef Hany M.12ORCID,Tantawy Ahmed H.3,Soliman Kamal A.3,Eid Salah34,Abo-Riya Mohamed A.3

Affiliation:

1. Chemistry Department, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia

2. Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt

3. Chemistry Department, Faculty of Science, Benha University, Benha 13518, Egypt

4. Chemistry Department, College of Science and Arts, Jouf University, Alqurayat 77455, Saudi Arabia

Abstract

Novel imine-tethering cationic surfactants, namely (E)-3-((2-chlorobenzylidene)amino)-N-(2-(decyloxy)-2-oxoethyl)-N,N-dimethylpropan-1-aminium chloride (ICS-10) and (E)-3-((2-chlorobenzylidene)amino)-N,N-dimethyl-N-(2-oxo-2-(tetradecyloxy)ethyl)propan-1-aminium chloride (ICS-14), were synthesized, and the chemical structures were elucidated by various spectroscopic approaches. The surface properties of the target-prepared imine-tethering cationic surfactants were investigated. The effects of both synthesized imine surfactants on carbon steel corrosion in a 1.0 M HCl solution were investigated by weight loss (WL), potentiodynamic polarization (PDP), and scanning electron microscopy (SEM) methods. The outcomes show that the inhibition effectiveness rises with raising the concentration and diminishes with raising the temperature. The inhibition efficiency of 91.53 and 94.58 % were attained in the presence of the optimum concentration of 0.5 mM of ICS-10 and ICS-14, respectively. The activation energy (Ea) and heat of adsorption (Qads) were calculated and explained. Additionally, the synthesized compounds were investigated using density functional theory (DFT). Monte Carlo (MC) simulation was utilized to understand the mechanism of adsorption of inhibitors on the Fe (110) surface.

Funder

Deanship of Scientific Research, King Faisal University, Saudi Arabia

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3