Comparison of Radionuclide Impurities Activated during Irradiation of 18O-Enriched Water in Tantalum and Silver Targets during the Production of 18F in a Cyclotron

Author:

Jakubowska Teresa123ORCID,Długosz-Lisiecka Magdalena1ORCID,Biegała Michał23

Affiliation:

1. Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wróblewskiego 15, 90-924 Łódź, Poland

2. Department of Medical Physics, Copernicus Memorial Hospital in Lodz Comprehensive Cancer Center and Traumatology, Pabianicka 62, 93-513 Łódź, Poland

3. Department of Medical Imaging Technology, Medical University of Lodz, ul. Lindleya 6, 690-131 Łódź, Poland

Abstract

During the production of 18F, as a result of the interaction of the beam of protons and secondary neutrons with the structural elements of the target body, many radionuclide impurities are created in the cyclotron. As part of this work, we theoretically predicted which isotopes would be activated in the target tantalum or silver bodies. Subsequently, we used gamma spectrometry analysis to verify these predictions. The results were compared with the work of other authors who studied titanium and niobium as materials for making the target body. Tantalum has been evaluated as the most favorable in terms of generating radionuclide impurities during the production of 18F by irradiation of 18O-enriched water in accelerated proton cyclotrons. Only three radionuclides were identified in the tested samples: 181W, 181Hf, and 182Ta with a half-life of fewer than 120 days. The remaining reactions led to the formation of stable isotopes.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3