Strain-Induced Robust Exchange Bias Effect in Epitaxial La0.7Sr0.3MnO3/LaFeO3 Bilayers

Author:

Zhang Jun1ORCID,Su Tiancong23,Ma Jianchun1

Affiliation:

1. Department of Chemical & Material Engineering, Lyuliang University, Lishi 033001, China

2. School of Chemistry and Materials Science of Shanxi Normal University & Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 030006, China

3. Institute of New Carbon-Based Materials and Zero-Carbon and Negative-Carbon Technology, Lyuliang University, Lishi 033001, China

Abstract

The ground state of correlated electrons in complex oxide films can be controlled by applying epitaxial strain, offering the potential to produce unexpected phenomena applicable to modern spintronic devices. In this study, we demonstrate that substrate-induced strain strongly affects the coupling mode of interfacial magnetic moments in a ferromagnetic (FM)/antiferromagnetic (AFM) system. In an epitaxial bilayer comprising AFM LaFeO3 (LFO) and FM La0.7Sr0.3MnO3 (LSMO), samples grown on a LaAlO3 (LAO) substrate exhibit a larger exchange bias field than those grown on a SrTiO3 substrate. Our results indicate a transition in the alignment of magnetic moments from perpendicular to collinear due to the large compressive strain exerted by the LAO substrate. Collinear magnetic moments at the LSMO/LFO interface generate strong exchange coupling, leading to a considerable exchange bias effect. Thus, our findings provide a method for tailoring and manipulating the orientations of magnetic moments at the FM/AFM heterogeneous interface using strain engineering, thereby augmenting methods for exchange bias generation.

Funder

the National Science Foundation of China

Key Research and Development Project of Introducing High-Level Scientific and Technological Talents in Luliang City

Fundamental Research Program of Shanxi Province

Provincial Ministry of Education to Build Advanced Permanent Magnet Materials and Technology Collaborative Innovation Center

Youth Basic Research Project Foundation of Shanxi Province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3