Anti-Melanogenic Potential of Natural and Synthetic Substances: Application in Zebrafish Model

Author:

Ferreira Adriana M.1,de Souza Agerdânio A.1,Koga Rosemary de Carvalho R.1ORCID,Sena Iracirema da S.2,Matos Mateus de Jesus S.2,Tomazi Rosana3,Ferreira Irlon M.2ORCID,Carvalho José Carlos T.1

Affiliation:

1. Research Laboratory of Drugs, Department of Biological and Health Sciences, Federal University of Amapá, Rod. JK, km 02, Macapá 68902-280, Amapá, Brazil

2. Laboratory of Biocatalysis and Applied Organic Synthesis, Department of Exact Sciences, Chemistry Course, Federal University of Amapá, Rod. JK, km 02, Macapá 68902-280, Amapá, Brazil

3. Federal Institute of Amapá, Chemistry Course, BR-210 Highway, km 03, S/N—Brasil Novo, Macapá 68909-398, Amapá, Brazil

Abstract

Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in human skin. A key enzyme in the process of pigmentation through melanin is tyrosinase, which catalyzes the first and only limiting step in melanogenesis. Since the discovery of its methanogenic properties, tyrosinase has been the focus of research related to the anti-melanogenesis. In addition to developing more effective and commercially safe inhibitors, more studies are required to better understand the mechanisms involved in the skin depigmentation process. However, in vivo assays are necessary to develop and validate new drugs or molecules for this purpose, and to accomplish this, zebrafish has been identified as a model organism for in vivo application. In addition, such model would allow tracking and studying the depigmenting activity of many bioactive compounds, important to genetics, medicinal chemistry and even the cosmetic industry. Studies have shown the similarity between human and zebrafish genomes, encouraging their use as a model to understand the mechanism of action of a tested compound. Interestingly, zebrafish skin shares many similarities with human skin, suggesting that this model organism is suitable for studying melanogenesis inhibitors. Accordingly, several bioactive compounds reported herein for this model are compared in terms of their molecular structure and possible mode of action in zebrafish embryos. In particular, this article described the main metabolites of Trichoderma fungi, in addition to substances from natural and synthetic sources.

Funder

Fundação de Amparo à Pesquisa do Estado do Amapá

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3