Bis-Phenoxo-CuII2 Complexes: Formal Aromatic Hydroxylation via Aryl-CuIII Intermediate Species

Author:

Ribas XaviORCID,Xifra Raül,Fontrodona XavierORCID

Abstract

Ullmann-type copper-mediated arylC-O bond formation has attracted the attention of the catalysis and organometallic communities, although the mechanism of these copper-catalyzed coupling reactions remains a subject of debate. We have designed well-defined triazamacrocyclic-based aryl-CuIII complexes as an ideal platform to study the C-heteroatom reductive elimination step with all kinds of nucleophiles, and in this work we focus our efforts on the straightforward synthesis of phenols by using H2O as nucleophile. Seven well-defined aryl-CuIII complexes featuring different ring size and different electronic properties have been reacted with water in basic conditions to produce final bis-phenoxo-CuII2 complexes, all of which are characterized by XRD. Mechanistic investigations indicate that the reaction takes place by an initial deprotonation of the NH group coordinated to CuIII center, subsequent reductive elimination with H2O as nucleophile to form phenoxo products, and finally air oxidation of the CuI produced to form the final bis-phenoxo-CuII2 complexes, whose enhanced stability acts as a thermodynamic sink and pushes the reaction forward. Furthermore, the corresponding triazamacrocyclic-CuI complexes react with O2 to undergo 1e− oxidation to CuII and subsequent C-H activation to form aryl-CuIII species, which follow the same fate towards bis-phenoxo-CuII2 complexes. This work further highlights the ability of the triazamacrocyclic-CuIII platform to undergo aryl-OH formation by reductive elimination with basic water, and also shows the facile formation of rare bis-phenoxo-CuII2 complexes.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3