Degree of Coupling in Microwave-Heating Polar-Molecule Reactions

Author:

Liu Xingpeng1,Huang Heping2,Yang Linsen1,Huang Kama3

Affiliation:

1. School of Network and Communication Engineering, Chengdu Technological University, Chengdu 611730, China

2. College of Electronics and Information, Southwest Minzu University, Chengdu 610041, China

3. College of Electronics and Information Engineering, Sichuan University, Chengdu 610064, China

Abstract

Microwave-assisted chemical reactions have been widely used, but the overheating effect limits further applications. The aim of this paper is to investigate the coupling degree of the electromagnetic field and thermal field in microwave-heating chemical reactions whose polarization changes as the reactions proceed. First, the entropy-balance equation of microwave-heating polar-molecule reactions is obtained. Then, the coupling degree of the electromagnetic field and the thermal field in microwave-heating polar-molecule reactions is derived, according to the entropy-balance equation. Finally, the effects of reaction processes on the degree of coupling are discussed. When the time scale of the component-concentration variation is much greater than the wave period during the chemical processes, the degree of coupling is sufficiently small, and the electric and thermal fields are considered as weakly coupled. On the other hand, the degree of coupling may change during the reactions. If the absolute value of the coupling degree becomes larger, due to the change in component concentration, this will lead to a transition from weak coupling to strong coupling.

Funder

National Natural Science Foundation of China

Foundation of Chengdu Technological University

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3