Entinostat-Bortezomib Hybrids against Multiple Myeloma

Author:

Ferro Angelica12,Graikioti Dafni3ORCID,Gezer Emre12ORCID,Athanassopoulos Constantinos M.3ORCID,Cuendet Muriel12ORCID

Affiliation:

1. School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland

2. Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland

3. Synthetic Organic Chemistry Laboratory, Department of Chemistry, University of Patras, 26504 Patras, Greece

Abstract

Although proteasome inhibitors have emerged as the therapeutic backbone of multiple myeloma treatment, patients often relapse and become drug refractory. The combination between proteasome and histone deacetylase inhibitors has shown to be more efficient compared to monotherapy by enhancing the anti-myeloma activity and improving the patient’s lifetime expectancy. Hybrid molecules, combining two drugs/pharmacophores in a single molecular entity, offer improved effectiveness by modulating more than one target and circumventing differences in the pharmacokinetic and pharmacodynamic profiles, which are the main disadvantages of combination therapy. Therefore, eleven histone deacetylase-proteasome inhibitor hybrids were synthesized, combining pharmacophores of entinostat and bortezomib. Compound 3 displayed the strongest antiproliferative activity with an IC50 value of 9.5 nM in the multiple myeloma cells RPMI 8226, 157.7 nM in the same cell line resistant to bortezomib, and 13.1 nM in a 3D spheroid model containing multiple myeloma and mesenchymal stem cells. Moreover, the compound inhibited 33% of histone deacetylase activity when RPMI 8226 cells were treated for 8 h at 10 µM. It also inhibited the proteasome activity with an IC50 value of 23.6 nM.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3