Effects of Exercise Training on Renal Carnitine Biosynthesis and Uptake in the High-Fat and High-Sugar-Fed Mouse

Author:

Upadhyay Aman,Al-Nakkash LaylaORCID,Broderick Tom L.

Abstract

(1) Background: Diet-induced obesity inhibits hepatic carnitine biosynthesis. Herein, the effects of high-fat (HF) and high-sugar (HFHS) feeding and exercise training (ET) on renal carnitine biosynthesis and uptake were determined. (2) Methods: Male C57BL/6J mice were assigned to the following groups: lean control (standard chow), HFHS diet, and HFHS diet with ET. ET consisted of 150 min of treadmill running per week for 12 weeks. Protein levels of γ-butyrobetaine hydroxylase (γ-BBH) and organic cation transporter-2 (OCTN2) were measured as markers of biosynthesis and uptake, respectively. (3) Results: HFHS feeding induced an obese diabetic state with accompanying hypocarnitinemia, reflected by decreased free carnitine levels in plasma and kidney. This hypocarnitinemia was associated with decreased γ-BBH (~30%) and increased OCTN2 levels (~50%). ET failed to improve the obesity and hyperglycemia, but improved insulin levels and prevented the hypocarnitinemia. ET increased protein levels of γ-BBH, whereas levels of OCTN2 were decreased. Peroxisome proliferator-activated receptor-alpha content was not changed by the HFHS diet or ET. (4) Conclusions: Our results indicate that ET prevents the hypocarnitinemia induced by HFHS feeding by increasing carnitine biosynthesis in kidney. Increased expression of OCTN2 with HFHS feeding suggests that renal uptake was stimulated to prevent carnitine loss.

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3