Research on the Effects of Drying Temperature for the Detection of Soil Nitrogen by Near-Infrared Spectroscopy

Author:

Zhou Ling1ORCID,Yao Jiangjun2,Xu Honggang3,Zhang Yahui3ORCID,Nie Pengcheng34

Affiliation:

1. College of Information Engineering, Tarim University, 1188 Junken Avenue, Alar 843300, China

2. Key Laboratory of Tarim Oasis Agriculture, Ministry of Education, Tarim University, 1188 Junken Avenue, Alar 843300, China

3. College of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China

4. Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China

Abstract

Nitrogen nitrates play a significant role in the soil’s nutrient cycle, and near-infrared spectroscopy can efficiently and accurately detect the content of nitrate–nitrogen in the soil. Accordingly, it can provide a scientific basis for soil improvement and agricultural productivity by deeply examining the cycle and transformation pattern of nutrients in the soil. To investigate the impact of drying temperature on NIR soil nitrogen detection, soil samples with different N concentrations were dried at temperatures of 50 °C, 65 °C, 80 °C, and 95 °C, respectively. Additionally, soil samples naturally air-dried at room temperature (25 °C) were used as a control group. Different drying times were modified based on the drying temperature to completely eliminate the impact of moisture. Following data collection with an NIR spectrometer, the best preprocessing method was chosen to handle the raw data. Based on the feature bands chosen by the RFFS, CARS, and SPA methods, two linear models, PLSR and SVM, and a nonlinear ANN model were then established for analysis and comparison. It was found that the drying temperature had a great effect on the detection of soil nitrogen by near-infrared spectroscopy. In the meantime, the SPA-ANN model simultaneously yielded the best and most stable accuracy, with Rc2 = 0.998, Rp2 = 0.989, RMSEC = 0.178 g/kg, and RMSEP = 0.257 g/kg. The results showed that NIR spectroscopy had the least effect and the highest accuracy in detecting nitrogen at 80 °C soil drying temperature. This work provides a theoretical foundation for agricultural production in the future.

Funder

Research and Demonstration of Key Technology of Saline Water Resources Utilization, Major Science and Technology Project of the Xinjiang Production and Construction Corps

National Key Research and Development Program

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3