Affiliation:
1. Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
2. Department of Chemical Engineering, Department of Integrative Engineering for Hydrogen Safety, Kangwon National University, Chuncheon 24341, Republic of Korea
Abstract
As the disposal of waste plastic emerges as a societal problem, photocatalytic waste plastic conversion is attracting significant attention. Ultimately, for a sustainable future, the development of an eco-friendly plastic conversion technology is essential for breaking away from the current plastic use environment. Compared to conventional methods, photocatalysis can be a more environmentally friendly option for waste plastic reprocessing because it uses sunlight as an energy source under ambient temperature and pressure. In addition to this, waste plastics can be upcycled (i.e., converted into useful chemicals or fuels) to enhance their original value via photocatalytic methods. Among various strategies for improving the efficiency of the photocatalytic method, nanomaterials have played a pivotal role in suppressing charge recombination. Hence, in recent years, attempts have been made to introduce nanomaterials/nanostructures into photocatalytic plastic conversion on the basis of advances in material-based studies using simple photocatalysts. In line with this trend, the present review examines the nanomaterials/nanostructures that have been recently developed for photocatalytic plastic conversion and discusses the direction of future development.
Funder
Korean government
Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry, and Energy (MOTIE) of the Republic of Korea
Subject
Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献