Development of a Fast and Robust UHPLC Method for Apixaban In-Process Control Analysis

Author:

Kormány Róbert,Rácz Norbert,Fekete SzabolcsORCID,Horváth KrisztiánORCID

Abstract

In-process control (IPC) is an important task during chemical syntheses in pharmaceutical industry. Despite the fact that each chemical reaction is unique, the most common analytical technique used for IPC analysis is high performance liquid chromatography (HPLC). Today, the so-called “Quality by Design” (QbD) principle is often being applied rather than “Trial and Error” approach for HPLC method development. The QbD approach requires only for a very few experimental measurements to find the appropriate stationary phase and optimal chromatographic conditions such as the composition of mobile phase, gradient steepness or time (tG), temperature (T), and mobile phase pH. In this study, the applicability of a multifactorial liquid chromatographic optimization software was studied in an extended knowledge space. Using state-of-the-art ultra-high performance liquid chromatography (UHPLC), the analysis time can significantly be shortened. By using UHPLC, it is possible to analyse the composition of the reaction mixture within few minutes. In this work, a mixture of route of synthesis of apixaban was analysed on short narrow bore column (50 × 2.1 mm, packed with sub-2 µm particles) resulting in short analysis time. The aim of the study was to cover a relatively narrow range of method parameters (tG, T, pH) in order to find a robust working point (zone). The results of the virtual (modeled) robustness testing were systematically compared to experimental measurements and Design of Experiments (DoE) based predictions.

Funder

Nemzeti Kutatási Fejlesztési és Innovációs Hivatal

Publisher

MDPI AG

Subject

Chemistry (miscellaneous),Analytical Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Molecular Medicine,Drug Discovery,Pharmaceutical Science

Reference12 articles.

1. International Council for Harmonisation Guideline Q8 (R2) on Pharmaceutical Devlopment, Step 5 Version 2017 https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-11.pdf

2. Retention Modeling in an Extended Knowledge Space

3. The hydrophobic-subtraction model of reversed-phase column selectivity

4. Computerized design of separation strategies by reversed-phase liquid chromatography: development of DryLab software

5. Software-Assisted Method Development in High Performance Liquid Chromatography,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3